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What was Linear Algebra again? And why do we need it? I
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What was Linear Algebra again? And why do we need it? II

Linear Algebra =̂ Study of linear sets of equations & their
transformation properties.

But, ”something with matrices and vectors” isn’t far off at all!
We can think of linear algebra as using mathematical operations on
vectors and matrices to create new vectors and matrices.

Example: We can ”create” the vector (x, y, z)> ∈ R3 by solving

System of Linear Equations
2x+ 4y + 6z = 18
4x+ 5y + 6z = 24
3x+ 1y − 2z = 4

→

Matrix representation

A =

2 4 6
4 5 6
3 1 2

 x =

xy
z

 b =

18
24
4
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What was Linear Algebra again? And why do we need it? III

Vectors and matrices can have all sorts of mathematical objects as
entries, but we (just as most statisticians and data scientists) only
concern ourselves with vectors in Rp and matrices in Rm×n,
p,m, n ∈ N.

As such, we can also think of Linear Algebra as the math of data:

View(iris[1:10,4:1])
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What was Linear Algebra again? And why do we need it? IV

Hopefully, the iris-example reminded you of the matrix notation in
(linear) regression.

In fact, solving linear regression using OLS is one of the easiest
examples for how Linear Algebra is central to many statistical tasks.

In today’s lecture, we will review some basic methods of Linear
Algebra which you will need for this course.

Throughout, the guiding principle will be: How can we use linear
transformations to make objects easier to deal with?
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Basic calculation rules and definitions

Reminder: Matrix multiplication

We always multiply rows with columns of the same length, so for
two vectors x = (x1, x2, x3)

>,y = (y1, y2, y3)
> ∈ R3

x>y = (x1, x2, x3)

y1y2
y3

 = x1y1 + x2y2 + x3y3 .

And two matrices can only be multiplied if their inner dimensions
agree, so for A ∈ Rm×n, B ∈ Rn×p

AB = C , where C ∈ Rm×p with cij =
n∑
k=1

aikbkj .
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Basic calculation rules and definitions

Some basic definitions I

Transpose: The transpose operator A> swaps rows and columns.
If A ∈ Rm×n then A> ∈ Rn×m and (A>)ij = Aji. Also,

(A>)> = A

(AB)> = B>A>.

Symmetric (For square matrices only): A matrix A ∈ Rn×n is
symmetric, if A = A>.
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Basic calculation rules and definitions

Some basic definitions II

Inverse (For square matrices only): Let In denote the n× n identity
matrix. A matrix B ∈ Rn×n is invertible, if there exists a matrix
B−1 ∈ Rn×n so that BB−1 = B−1B = In. Also,

B−1 is unique if it exists.

(B−1)−1 = B

(BA)−1 = A−1B−1

(B−1)> = (B>)−1.
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Basic calculation rules and definitions

Some basic definitions III

Linear independence: A set of vectors {v1, ...,vn} ∈ Rp is linearly
independent if, for scalars c1, ..., cn ∈ R,

c1v1 + ...+ cnvn = 0 if and only if c1 = ... = cn = 0 .

Rank: For a matrix A ∈ Rm×n

Row rank:= the number of linearly independent rows in A.

Column rank:= the number of linearly independent columns in A.
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Basic calculation rules and definitions

Some basic definitions IV

What is the row/column rank of the matrix1 2 3 4
0 2 0 4
2 4 6 8

?

1 2 3 4
0 2 0 4
2 4 6 8

 R3−2R1

−−−−−−−−−−−→

1 2 3 4
0 2 0 4
0 0 0 0

⇒ row rank = 2.

1 2 3 4
0 2 0 4
2 4 6 8

 C3−3C1, C4−2C2

−−−−−−−−−−−→

1 2 0 0
0 2 0 0
2 4 0 0

⇒ column rank = 2.
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Basic calculation rules and definitions

Some basic definitions V

Cool fact: The row rank always equals the column rank!1

⇒ we can just talk about "the rank” of a matrix A (rank(A)).

Some properties:

rank(A+B) ≤ rank(A) + rank(B)

rank(A) = rank(A>) = rank(AA>) = rank(A>A)

A ∈ Rn×n is invertible if and only if rank(A) = n.
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Basic calculation rules and definitions

Some basic definitions VI

Diagonalizability (For square matrices only): A matrix M ∈ Rn×n is
diagonalizable if M = ADA−1 for some diagonal D and invertible A

Definiteness (For square matrices only): A matrix M ∈ Rn×n is

positive semi-definite, if ∀x ∈ Rn : x>Mx ≥ 0 and

positive definite, if ∀x ∈ Rn : x>Mx > 0.

Negative (semi-)definiteness is defined analogously by replacing
≥ and > with ≤ and <, respectively.

To diagonalize matrices, determine definiteness as well as do lots of
other stuff, we can use eigenvalues and eigenvectors!

1See https://ocw.mit.edu/courses/18-701-algebra-i-fall-2010/
dfd72d3d4a11988c2335b5e9a79ce48b_MIT18_701F10_rrk_crk.pdf for a short proof.
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Eigenstuff

Eigenvectors and eigenvalues

For a square matrix A ∈ Rn×n, consider the mapping

M : Rn −→ Rn, x 7→ Ax .

An eigenvector of A is a non-zero vector v ∈ Rn so that for some
λ ∈ R

M(v) = Av = λv .

λ is called eigenvalue of A (corresponding to v).

Hannah Kümpel Multivariate Verfahren 15 / 50



Eigenstuff

Example

For example, the matrix

2 0 0
0 2 0
0 0 2

 has eigenvectors v1 = (1, 0, 0),

v2 = (0, 1, 0), v3 = (0, 0, 1) and eigenvalues λ1 = λ2 = λ3 = 2.
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Eigenstuff

Some observations

Note that an eigenvector of a matrix A is a vector that maintains its
direction through the mappingM.

Clearly, this (Av = λv) only works for symmetric matrices.

For clarity, one usually works with normalized eigenvectors, defined
as v
‖v‖ . (In this example: (2,0,0)>

‖(2,0,0)>‖ =
(2,0,0)>

2 = (1, 0, 0)> etc.)

It turns out that an n× n matrix of rank k will always have n eigen-
vectors with k non-zero corresponding eigenvalues. Do you know why?
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Eigenstuff

Calculating eigenvalues and eigenvectors - Determinants I

For situations that aren’t as trivial as the previous example, we use
determinants to calculate eigenvalues and eigenvectors.

A determinant is a function of a square matrix (A ∈ Rn×n), denoted
by det(A) or |A|, from which we can get some helpful properties of A.

Determinants can be calculated using the Leibniz formula

det(A) =
∑
τ∈Sn

sgn(τ)

n∏
i=1

ai, τ(i) =
∑
σ∈Sn

sgn(σ)

n∏
i=1

aσ(i), i ,

where sgn is the sign function of elements of the permutation group
Sn which returns +1 for even and −1 for odd permutations.
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Eigenstuff

Calculating eigenvalues and eigenvectors - Determinants II

For 2× 2 and 3× 3 matrices, the Leibniz formula gives∣∣∣∣a b
c d

∣∣∣∣ = ad− bc, and

∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣ = aei+ bfg + cdh− ceg − bdi− afh,

respectively.
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Eigenstuff

How to calculate eigenvalues and eigenvectors

Given a symmetric matrix M ∈ Rn×n, we can now calculate its eigenstuff
by

1 Solving det(M − λIn)
!
= 0 for λ to get all eigenvalues of M .

2 For each i ∈ {1, ..., n}, determining the eigenvector corresponding to
λi by solving (M − λiIn)x

!
= 0.

(Where x is a vector of variables which, once solved for, make up the
entries of eigenvector vi.)
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Eigenstuff

Example continued

In the previous example, with M =

2 0 0
0 2 0
0 0 2

, we have

det(M − λI3)
!
= 0⇔ (2− λ)3 !

= 0 ⇒ λ1 = λ2 = λ3 = 2 and

(
M − λiI3

)x1x2
x3

 !
= 0 ⇔

0x1 + 0x2 + 0x3 = 0
0x1 + 0x2 + 0x3 = 0
0x1 + 0x2 + 0x3 = 0

⇒ technically, all vectors in R3 except (0, 0, 0)> are eigenvectors of
M , but if we want 3 linearly independent, normalized eigenvectors,
the simplest solution is v1 = (1, 0, 0), v2 = (0, 1, 0), v3 = (0, 0, 1).
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Eigenstuff

Some helpful rules I

For a symmetric matrix A ∈ Rn×n the following holds

The eigenvalues of A are all real.

The eigenvectors of A are orthogonal.
This means that, ∀i, j ∈ {1, ..., n} with i 6= j: v>i vj = 0.

Furthermore, the eigenvalues of A and A> are identical since
det(A− λI) = det

(
(A− λI)>

)
= det(A> − λI).

Definition: A matrix Q is called orthogonal, or orthonormal, if it is a real
square matrix whose columns and rows are orthonormal vectors (i.e.
orthogonal vectors, all of which have length 1). Then QQ> = Q>Q = I.
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Eigenstuff

Some helpful rules II

We can calculate the inverse of a square matrix A ∈ Rn×n as

A−1 =
1

det(A)
Adj(A)

Where Adj(A) is the adjugate matrix of A.

The general definition of adjugate matrix is transpose of the cofactor
matrix, but you will at most need to calculate Adj(M) for
M ∈ R2×2, for which you the following holds

Adj

((
a b
c d

))
=

(
d −b
−c a

)
.
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Eigenstuff

Some helpful rules III

For a symmetric matrix A ∈ Rn×n, it is very easy to determine
definiteness once one has calculated the eigenvalues λ1, ..., λn

A is positive/negative semi-definite, iff ∀i ∈ {1, ..., n} : λi ≥ 0 /
λi ≤ 0, respectively.

A is positive/negative definite, iff ∀i ∈ {1, ..., n} : λi > 0 /
λi < 0, respectively.

A is indefinite when there exists both a λi > 0 and λj < 0 for
i, j ∈ {1, ..., n}, i 6= j.

For a non-symmetric but still square matrix B ∈ Rn×n, definiteness
may be determined by applying the above rules to the matrix
1
2

(
B +B>

)
.
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Decompositions

Motivation

Matrix decomposition refers to rewriting matrices as products of other
matrices. There are many different methods, some of which will be covered
in this lecture. Some advantages of matrix decomposition are

Easier computation of problems using handy matrix properties.
(Especially inverses and roots)

Increasing the informative value of matrices from a
mathematical/statistical perspective.

Avoid correlation related issues by decomposing covariance matrices.
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Decompositions

QR decomposition

You have probably already heard of QR decomposition.
It is, e.g., used to solve linear least squares (which we will get to later)
or the QR algorithm to determine eigenvalues/-vectors.

In this case, a matrix A is decomposed into a product A = QR of an
orthonormal matrix Q and an upper triangular matrix R.
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Decompositions

Cholesky decomposition I

Any symmetric and positive definite matrix A ∈ Rn×n may be
decomposed by writing

A = LL> ,

where L is a lower triangular matrix (and, by transition, L> an upper
triangular matrix).

Generally, the Cholesky decomposition is slightly less stable than, e.g.,
QR decomposition, but more efficient for large n!
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Decompositions

Cholesky decomposition II

Specifically, we have

A = LL> =

l11 . . . 0
...

. . .
...

ln1 . . . lnn


l11 . . . l1n

...
. . .

...
0 . . . lnn


with, ∀i, k ∈ {1, ..., n}, i 6= k,

lii =
√
aii −

∑i−1
j=1 l

2
ij

lki =
aki −

∑i−1
j=1 lij lkj

lii
.
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Decompositions

Cholesky decomposition - example

In the previous example, with M =

2 0 0
0 2 0
0 0 2

, we have

l11 =
√
2−

∑0
j=1 l

2
ij =
√
2− 0 =

√
2, l21 = l31 =

0√
2
= 0,

l22 =
√
2−

∑1
j=1 l

2
ij =
√
2− 0 =

√
2, l12 = l32 =

0√
2
= 0, and

l33 =
√
2−

∑2
j=2 l

2
ij =
√
2− 0 =

√
2, l12 = l32 =

0√
2
= 0.

So, clearly, it follows that

M = LL> .
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Decompositions

Eigendecomposition (Spektralzerlegung) I

Note that for any square matrix A ∈ Rn×n, each of the following
statements implies the other2

A is diagonalizable ⇔

A has n linearly independent eigenvectors.

If one (i.e. both) of these statements holds for a matrix A ∈ Rn×n we
can decompose it into

A = QΛQ−1 ,

where Q is the square n× n matrix whose ith column is the
eigenvector vi of A, and Λ is the diagonal matrix whose diagonal
elements are the corresponding eigenvalues, Λii = λi.
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Decompositions

Eigendecomposition (Spektralzerlegung) II

The decomposition A = QΛQ−1 is actually really intuitive once one
considers

Av = λv for any eigenvalue λ and eigenvector v.

Therefore, since the columns of Q are the eigenvectors of A:
AQ = QΛ.

And it clearly immediately follows that A = QΛQ−1.

2See https://sharmaeklavya2.github.io/theoremdep/nodes/linear-algebra/
eigenvectors/diag-linindep.html for a short proof.
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Decompositions

Eigendecomposition (Spektralzerlegung) -
continued example

In the previous example, with M =

2 0 0
0 2 0
0 0 2

, we have

Λ =

2 0 0
0 2 0
0 0 2

 and

Q = Q−1 = I3.

So, clearly, it follows that

M = QΛQ−1 .
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Decompositions

Singular value decomposition (SVD) I

Eigendecomposition is extremely helpful in many situation, however, it
only applies to diagonizable, and therefore square, matrices.

For a non-square matrix we can use singular value decomposition
(SVD)!

First, note that for any not necessarily symmetric matrix A ∈ Rm×n,
the matrix A>A ∈ Rn×n is symmetric because

(A>A)> = A>(A>)> = A>A .

Now, A>A has n real eigenvalues since it is symmetric, and one can
show that all of them are positive3.
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Decompositions

Singular value decomposition (SVD) II

The same of course holds for AA> ∈ Rm×m, except for that it is an
m×m matrix.

Importantly, both A>A and AA> will always have the same
r = rank(A) non-zero eigenvalues.
This follows directly from Sylvester’s determinant theorem:
For two matrices A,B ∈ Rm×n it holds that

det(Im +AB>) = det(In +B
>A)

(See (B.1.16) from Pozrikidis 20144), because setting B = A, we can
then show that for any non-zero eigenvalue of either A>A or AA>

det(AA> − λIm) = det(A>A− λIn) .
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Decompositions

Singular value decomposition (SVD) III

For r = rank(A), let {λ1, ..., λr} denote the set of non-zero
eigenvalues of A>A and AA>, reordered so that

λ1 ≥ λ2 ≥ ... ≥ λr > 0 .

The non-zero sigular values of A are then defined as

σi :=
√
λi ∀i = 1, ..., r .

Based on this, the singular value decomposition of a matrix
A ∈ Rm×n is then given by

A = UΣV >.
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Decompositions

Singular value decomposition (SVD) IV

There are two versions of this decomposition regarding the exact form
of U , Σ, and V , often referred to as full and compact SVD,
respectively5.

We will focus on the compact version, which is also implemented in
Base R as the function svd().

3See https://towardsdatascience.com/
understanding-singular-value-decomposition-and-its-application-in-data-science-388a54be95d
for proof and further explanation

4Sylvester
5See http://pfister.ee.duke.edu/courses/ecen601/notes_ch8.pdf for the

formal definitions.
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Decompositions

Compact singular value decomposition I

Here, a matrix A ∈ Rm×n with rank(A) = r is decomposed into
A = UΣV >, with

Σ =

σ1 . . . 0
...

. . .
...

0 . . . σr

, i.e. an r × r diagonal matrix with the singular

values of A on the diagonal. (Recall that σ1 ≥ σ2 ≥ ... ≥ σr > 0 .)

U =
(
u1, . . . ,ur

)
∈ Rm×r, where ui is the eigenvector of AA>

corresponding to the eigenvalue σ2
i and

V =
(
v1, . . . ,vr

)
∈ Rn×r, where vi is the eigenvector of A>A

corresponding to the eigenvalue σ2
i .
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Decompositions

Compact SVD example I

Consider the matrix A =

1 0
0 −1
0 0

.

To perform SVD, we first calculate

A>A =

(
1 0
0 1

)
and AA> =

1 0 0
0 1 0
0 0 0

 .

Recall that to get the eigenvalues of a matrix we have to solve
det(M − λIn)

!
= 0

⇒ the non-zero eigenvalues of A>A and AA> are λ1 = λ2 = 1.
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Decompositions

Compact SVD example II

So, by the definition of singular values σi, we get the following for A:
σ1 =

√
λ1 = 1, σ2 =

√
λ2 = 1.

⇒Σ =

(
1 0
0 1

)

Furthermore, non-zero eigenvectors of AA> are u1 = (1, 0, 0)> and
u2 = (0, 1, 0)>, so

U =

1 0
0 1
0 0

 and
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Decompositions

Compact SVD example III

Non-zero eigenvectors of AA> are v1 = (1, 0)> and v2 = (0,−1)>,
so

V =

(
1 0
0 −1

)
.

Check: UΣV > =

1 0
0 1
0 0

(1 0
0 1

)(
1 0
0 −1

)
=

1 0
0 −1
0 0

X
For even slightly less simple matrices, compact SVD quickly becomes
much more cumbersome to perform by hand. Luckily, R base contains
the svd() function to perform singular value decomposition -
see this Rpubs page for more on SVD and how to perform it in R.
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Educational example: Ordinary Least Squares

Reminder: Linear regression setting

We can write a linear regression with p independent variables (last
lecture, we discussed the case p = 1) in matrix form:

y =Xβ + ε ,

with
y = (y1, ..., yn)

>,

β = (β0, ..., βp)
>,

X =


1 x11 . . . x1p
1 x21 . . . x2p
...

...
. . .

...
1 xn1 . . . xnp

 and

error terms ε = (ε1, ..., εn)
>, usually modelled as εi

i.i.d∼ N (0, σ2).
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Educational example: Ordinary Least Squares

OLS in matrix notation I

If our objective is simply to minimize the least squares (i.e. distance of
points to regression line w.r.t. squared loss), our goal is to find the
global minimum of S(β) = (y −Xβ)T (y −Xβ).

Recall that last lecture, we considered the approach of maximizing the
Likelihood, or, equivalently, the log Likelihood, which is given by:

log
(
L
(
y;β = (β0, β1)

>
))

= log
( n

σ
√
2π
e
∑n
i=1−

1
2

(
yi−βX
σ

)2)
=n log(

1

2
πσ2)− 1

2
σ2

n∑
i=0

(yi − βX)2

Since the red term is equal to S(β), maximizing the Likelihood is
equivalent to minimizing the sum of squares in linear regression!
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Educational example: Ordinary Least Squares

OLS in matrix notation II

To solve this problem, we need to find a value β̂ so that the derivative
is equal to zero:

0
!
=
dS

dβ
(β) =

d

dβ

(
yTy − βTXTy − yTXβ + βTXTXβ

)
=− 2XTy + 2XTXβ .

Given that X has full column rank, and therefore XTX is invertible,
this is solved by

Rp+1 3 (β̂0, β̂1, ..., β̂p)
> = β̂ = (X>X)−1X>y .
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Educational example: Ordinary Least Squares

Data: Subset of iris

set.seed(735)
data<-iris[sample(1:nrow(iris),10),
c("Petal.Width","Petal.Length")]
plot(data$Petal.Length,data$Petal.Width)
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Educational example: Ordinary Least Squares

Example: matrix decomposition in linear regression I

So we want to use a linear model with Petal.Width as dependent
and Petal.Length as independent variable.

This is usually achieved via

lm(Petal.Width~Petal.Length,data=data)

But we can simply calculate the same coefficients as follows:

y<-data$Petal.Width
X<-matrix(c(rep(1,nrow(data)),data$Petal.Length)
,nrow=nrow(data),ncol=2)
solve(t(X)%*%X)%*%t(X)%*%y
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Educational example: Ordinary Least Squares

Example: matrix decomposition in linear regression II

Notice that, to get the matrix (X>X)−1=̂A, we need to use the
solve() function to solve the problem

(X>X)A =

1 . . . 0
...

. . .
...

0 . . . 1


for A.

This is clearly not a problem for simple and small cases of design
matrices X but it can quickly get complicated and computationally
expensive - and that is one example where matrix decomposition
comes into play!
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Educational example: Ordinary Least Squares

Example: matrix decomposition in linear regression III

Let’s look at this problem using QR-decomposition.

Having decomposed X = QR it follows that, if R is a square matrix,

X>X = (QR)>QR = R>Q>QR
Q is orthogonal

= R>R

Therefore,

β̂ = (X>X)−1X>y = (R>R)−1(QR)>y

= R−1(R>)−1R>Q>y

= R−1Q>y ,

which is much easier to compute!!
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Educational example: Ordinary Least Squares

Example: matrix decomposition in linear regression IV

Let’s look at this problem using SVD.

Having decomposed X = UΣV > it directly follows that, if V is a
square matrix,

(XTX)−1XT = (V ΣTUTUΣV T )−1V ΣTUT

=(V ΣTΣV T )−1V ΣTUT = (V T )−1(ΣTΣ)−1V −1V ΣTUT

=V (ΣTΣ)−1ΣTUT = V Σ−1UT

Therefore,

β̂ = (X>X)−1X>y = V Σ−1UTy ,

which is again much easier to compute!!
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